On groups of exponent four

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

COMPUTATIONAL RESULTS ON FINITE P-GROUPS OF EXPONENT P2

The Fibonacci lengths of the finite p-groups have been studied by R. Dikici and co-authors since 1992. All of the considered groups are of exponent p, and the lengths depend on the celebrated Wall number k(p). The study of p-groups of nilpotency class 3 and exponent p has been done in 2004 by R. Dikici as well. In this paper we study all of the p-groups of nilpotency class 3 and exponent p2. Th...

متن کامل

Small Exponent Point Groups on Elliptic Curves

Let E be an elliptic curve defined over Fq, the finite field of q elements. We show that for some constant η > 0 depending only on q, there are infinitely many positive integers n such that the exponent of E(Fqn), the group of Fqn-rational points on E, is at most q exp ( −n log logn ) . This is an analogue of a result of R. Schoof on the exponent of the group E(Fp) of Fp-rational points, when a...

متن کامل

Growth exponent of generic groups

In [GrH97], Grigorchuk and de la Harpe ask for conditions under which some group presentations have growth rate close to that of the free group with the same number of generators. We prove that this property holds for a generic group (in the density model of random groups). Namely, for every positive ε, the property of having growth exponent at least 1 − ε (in base 2m − 1 where m is the number ...

متن کامل

On Subgroups of Free Burnside Groups of Large Odd Exponent

We prove that every noncyclic subgroup of a free m-generator Burnside group B(m, n) of odd exponent n ≫ 1 contains a subgroup H isomorphic to a free Burnside group B(∞, n) of exponent n and countably infinite rank such that for every normal subgroup K of H the normal closure 〈K〉B(m,n) of K in B(m, n) meets H in K. This implies that every noncyclic subgroup of B(m, n) is SQ-universal in the clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1971

ISSN: 0021-8693

DOI: 10.1016/0021-8693(71)90042-1